
May 24, 2005

Laboratory Experiment VI

SHELL SCRIPTING WITH ARGUMENTS
by Alex Shaw III

Unedited Version

Shell Scripting with Arguments ▪ March 24, 2005

TABLE OF CONTENTS

Introduction ___ ii

Laboratory Sheets _______________________________________ iii
Tasks .. iii

Data Sheets __ 1
Preliminary Results ... 1

twice .. 1
home .. 1
suffix .. 2
rnfile .. 2

Final Results ... 3

Diagrams __ 5
Flowcharts ... 5

twice .. 5
home .. 6
suffix .. 7
rnfile.sh .. 8

Source Code __ 9
Code Listing .. 9

twice and twice.sh.. 9
home and home.sh ... 10
suffix and suffix.sh .. 11
rnfile and rnfile.sh .. 12

Analysis __ 13
Revisions ... 13

home.sh .. 13
suffix.sh ... 13

New Commands .. 14
cut .. 14

Conclusion __ 15

References __ 16
References ... 16

Shell Scripting with Arguments ▪ March 24, 2005 ii

INTRODUCTION

This experiment involves scripting with arguments. An
argument is part of a command that is used for a specific
purpose, such as an operation. For example, the cp
command utilizes two arguments—a source file and a
destination file.

Syntax of the cp command is shown in Diagram 1-1.

cp [option]… source destination

Argument 1

Argument 2

cp [option]… source destination

Argument 1

Argument 2

Diagram 1-1 General syntax of the cp command; however, there are
other formats. The main purpose is to understand what an argument is
and where its placement.

The programs created in this experiment are—twice,
home, suffix, and rnfile.1 A complete description of
each program is in the Source Code section.

1 All programs in this experiment are presented in lowercase even if it starts a sentence because that is the way they were

created in LINUX. It is important to preserve the integrity of the program, particularly since LINUX is case-sensitive.

Shell Scripting with Arguments ▪ March 24, 2005 iii

1
LABORATORY SHEETS

LABORATORY EXPERIMENT VI

LEHMAN COLLEGE
Of the City University of New York

Experiment #6 Shell Script Programming

Objective: To Enhance Shell Script Programming Proficency using Arguments

1. Write a program called “twice” that takes a single integer argument and
Doubles its value i.e. $ twice 15

30

What happens if a noninteger value is typed? What if the argument is
omitted?

2. Describe the program in detail

3. Write a program called “home” that takes the name of a user as an
argument and prints their home directory i.e. $ home steve gives
/export/home/steve

Describe all details.

4. Write a program called “suffix” that renames a file by adding the
character given as the second argument to the end of the name of the file
given as the first argument i.e. $ suffix memo1 sv renames memo1 to
memo1.sv

Modify the program to change the name altogether.

Describe all details.
Sheet 1-1 Tasks for Experiment 6.

Tasks

Sheet 1-1 provides the tasks to complete
during this experiment.

Shell Scripting with Arguments ▪ March 24, 2005 1

2
DATA SHEETS

LABORATORY EXPERIMENT VI

Output 2-1 Result of the twice program when run without an argument, which
produces an error statement. A line in the script utilizes an argument to perform
an operation.

Output 2-2 Result of the twice program when run with a non-integer, which
produces an error statement. Only integers are acceptable with this script.

Output 2-3 Result of the twice program when run with an integer. In this
case, it produces 30.

Output 2-4 Result of the home program when run without an argument, which
produces an error statement based on the usage of grep. In the script, grep
searches for the argument through the piped result of the cut command.

Output 2-5 Result of the home program when run with an argument. In this
case, steve was not found as a user in the /etc/passwd file.

Output 2-6 Result of the home program when run with an argument. In this
case, brw01 was found as a user in the /etc/passwd file and their home directory
is displayed.

Preliminary Results

Preliminary results of twice, home and suffix are
presented in this section, along with rnfile, an
additional command.

twice

twice produces an error when no argument is
issued (Output 2-1).

twice produces an error when a non-integer
argument is issued (Output 2-2).

Output 2-3 displays the result of a twice run with
an integer.

home

home produces an error when no argument is
issued (Output 2-4).

In Output 2-5, home seems to work because no
error statement or result message appears.
Actually, it works fine because the user steve1, in
this example, does not exist; therefore, steve has
no home directory and nothing is displayed.

Output 2-6 shows the result of a perfectly
executed command. Since brw01 is a user, it
displays their home directory.

1 Although steve is a proper name, the case reflects how he was

entered as an argument.

Data Sheets

Shell Scripting with Arguments ▪ March 24, 2005 2

Output 2-7 Result of the suffix program when run without an argument, which
produces an error statement on the usage of the mv command. The suffix
command requires two arguments, the file to change and the changing file.

Output 2-8 Result of the suffix program when run with arguments. In this
case, an error statement occurs because there is no such d file.

Output 2-9 After the touch command created a blank d file, suffix appends
d.d to d, which renames d to dd.d.

Output 2-10 Instead of appending a suffix to a file, the rnfile program
renames two files. In this case, dd.d is returned to d, its original name. On
errors, it produces similar results as in suffix.

suffix

suffix produces an error when run without an
argument (Output 2-7).

suffix produces an error when it attempts to
append d.d to d. It is suppose to rename d to dd.d
(Output 2-8).

In Output 2-9, the touch command creates the d
file, enable suffix to perform its necessary
operation.

rnfile

Results of the rnfile command (Output 2-10) is
similar to the results of suffix (Output 2-9).
Instead of appending to a file, however, it renames
it completely, from dd.d to d.

Data Sheets

Shell Scripting with Arguments ▪ March 24, 2005 3

Output 2-11 Result of the twice.sh program when run without an argument,
which produces a custom error statement. A line in the script utilizes an
argument to perform an operation.

Output 2-12 Result of the twice.sh program when run with a non-integer,
which produces a custom error statement. Only integers are acceptable with this
script.

Output 2-13 Result of the twice.sh program when run with an integer. In this
case, it produces 30.

Output 2-14 Result of the home.sh program when run without an argument,
which produces a custom error statement.

Output 2-15 Result of the home.sh program when run with an argument. In
this case, steve was not found as a user in the /etc/passwd file, which produces
a custom error statement.

Output 2-16 Result of the home.sh program when run with an argument. In
this case, brw06 was found as a user in the /etc/passwd file and their home
directory is displayed.

Final Results

Corrections to the programs in the previous
section provide a more user-friendly approach to
accomplishing the same tasks.

The windows (Output 2-11 to Output 2-20)
display results of what happens when we try to
run the same arguments on the revised programs,
as in Output 2-1 to Output 2-10 in the
preliminary results.

Data Sheets

Shell Scripting with Arguments ▪ March 24, 2005 4

Output 2-17 Result of the suffix.sh program when run without an argument,
which produces an error statement on the usage of the mv command. The suffix
command requires two arguments, the file to change and the changing file.

Output 2-18 Result of the suffix.sh program when run with arguments. In
this case, an error statement occurs because there is no such d file.

Output 2-19 After the touch command created a blank d file, suffix.sh
appends d.d to d, which renames d to dd.d.

Output 2-20 Instead of appending a suffix to a file, the rnfile.sh program
renames two files. In this case, dd.d is returned to d, its original name. On
errors, it produces similar results as in suffix.sh.

Shell Scripting with Arguments ▪ March 24, 2005 5

3
DIAGRAMS

LABORATORY EXPERIMENT VI

Flowcharts

twice

Start

Output
$twice

End

Calculate
twice=$1*2

Flowchart 3-1 Semantics of the twice program.

Start

Is
there

one ($1)
argument

?

End

Is
twice an
integer
($?)
?

Calculate
twice=$1*2

Output
$twice

Output
error message
for argument

count

Output
non-integer

error message

1

1

No

No

Yes

Yes

Flowchart 3-2 Semantics of the twice program (revised).

Diagrams

Shell Scripting with Arguments ▪ March 24, 2005 6

home

Start

End

Output
home and

argument (~$1)

Flowchart 3-3 Semantics of the home program.

Start

Is
there

one ($1)
argument

?

End

Output
result

Output
error message
for argument

count

Output
no home
directory
message

1

1

No

No

Yes

Yes

Process
pipe home

directory fields
from /etc/passwd
to expression
search for $1

Is
length of
result
greater
than 0?

Flowchart 3-4 Semantics of the home program (revised).

Diagrams

Shell Scripting with Arguments ▪ March 24, 2005 7

suffix

Start

End

Process
rename argument
one ($1) to

argument one and
two ($1$2)

Output
result

Flowchart 3-5 Semantics of the suffix program.

Start

Are
there two
($1 and
$2)

arguments
?

End

Output
result

Output
error message
for argument

count

Output
readable file
error message

1

1

No

No

Yes

Yes

Is the
first

argument
a file?

Is the
first

argument
readable?

Output
non-file error

message

Process
rename argument one
($1) to argument one

and two ($1$2)

No

Yes 1

Flowchart 3-6 Semantics of the suffix program (revised).

 continue on next page…

Diagrams

Shell Scripting with Arguments ▪ March 24, 2005 8

Start

Are
there two
($1 and
$2)

arguments
?

End

Output
result

Output
error message
for argument

count

Output
readable file
error message

1

1

No

No

Yes

Yes

Is the
first

argument
a file?

Is the
first

argument
readable?

Output
non-file error

message

Process
rename argument one
($1) to argument two

($2)

No

Yes 1

Flowchart 3-7 Semantics of the rnfile.sh program.

rnfile.sh

Shell Scripting with Arguments ▪ March 24, 2005 9

4
SOURCE CODE

LABORATORY EXPERIMENT VI

#!/bin/bash
echo $(($1*2))

Code 4-1 twice listing.

#!/bin/bash
#
#**
Filename: twice.sh
Author: Alex Shaw III
Date created: May 23, 2005
Last modified: May 23, 2005
#
Purpose: Doubles an integer
#
Description:
twice.sh takes one argument from the user and doubles it.
An error statement occurs if no argument is present or if
the argument is an integer.
#**

if [$# == 1]; then #If one argument exists
let "twice=$1*2" # perform arithmetic

if [$? == 0]; then #If exit status is true
clear # then the arithmetic
echo "twice Program" # was successful
echo "-------------"
echo "$1 * 2 = $twice"
exit 0

else #If exit status is false
clear # then argument was
echo "The argument must be an integer." # not an integer and
exit 1 # display error

fi # message

exit 0
else #Display error

clear # message
echo "Only one argument is acceptable with twice." # for the
echo "Usage: twice argument" # argument
exit 1

fi
Code 4-2 twice.sh listing.

Code Listing

The main goal of this experiment is to
resolve the tasks presented on the lab
sheets and document the process.

Two versions of twice, home, and
suffix enable you to complete a task
and enhance it.

twice and twice.sh

The twice satisfies the task, while
twice.sh enhances it.

Code 4-2 provides a complete listing
of twice.sh, which includes the
purpose and description.

Source Code

Shell Scripting with Arguments ▪ March 24, 2005 10

#!/bin/bash
cut -f6 -d: /etc/passwd | grep $1

Code 4-3 home listing.

#!/bin/bash
#
#**
Filename: home.sh
Author: Alex Shaw III
Date created: May 23, 2005
Last modified: May 23, 2005
#
Purpose: Displays the home directory of a user
#
Description:
home.sh takes an argument from the user and displays their home
directory. If the user does not exist a custom error statement is
display. A custom error statement also displayed if no argument
is entered.
#
The cut command cuts fields 1 and 6 of the /etc/passwd file that
contains the argument entered by the user. If the length of the
result is zero, then the user does not exist; otherwise, the home
directory is displayed.
#**

if [$# == 1]; then
homedir=`cut -f1,6 -d: /etc/passwd | grep $1`

The cut command works on files and directories.
However, you can pipe a result to the command, as shown below:

homedir=`echo $homedir | cut -f2 -d:`

clear
if [-z $homedir]; then

echo "The home directory of $1 does not exist!"
exit 0

else
echo "The home directory of $1 is:"
echo $homedir
exit 1

fi

exit 0
else

clear
echo "Only one argument is acceptable with home.sh"
echo "Usage: home.sh argument"
exit 1

fi
Code 4-4 home.sh listing.

home and home.sh

The home satisfies the task, while
home.sh enhances it.

Code 4-4 provides a complete listing
of home.sh, which includes the
purpose and description.

Source Code

Shell Scripting with Arguments ▪ March 24, 2005 11

#!/bin/bash
mv $1 $1$2

Code 4-5 suffix listing.

#!/bin/bash
#
#**
Filename: suffix.sh
Author: Alex Shaw III
Date created: May 24, 2005
Last modified: May 24, 2005
#
Purpose: Adds a suffix to a file
#
Description:
Accepts two arguments from the users and appends the second
argument to the first argument. If the argument count is not two,
then an error statement is displayed.
#
Argument one must be a file to make the change.
#**

clear
if [$# == 2]; then #If argument count is 2

if [-f $1]; then # check file existence
newfile=$1$2 # for argument one

mv $1 $newfile

if [-f $newfile]; then #If newly created file
echo "suffix Program" # exists after change,
echo "--------------" # display result
echo "$1 is now $1$2"

exit 0
else #New file creation was

echo "Adding $2 to $1 was unsuccessful!" # unsuccessful
exit 1

fi

exit 0
else #Argument 1 is not a

echo "$1 is not a file." # file
exit 1

fi

exit 0
else #The user did not enter

echo "You need two arguments to run suffix.sh" # two arguments
echo "Usage: suffix.sh argument1 argument2"
exit 1

fi
Code 4-6 suffix.sh listing.

suffix and suffix.sh

The suffix satisfies the task, while
suffix.sh enhances it.

Code 4-6 provides a complete listing
of suffix.sh, which includes the
purpose and description.

Source Code

Shell Scripting with Arguments ▪ March 24, 2005 12

#!/bin/bash
mv $1 $2

Code 4-7 rnfile listing.

#!/bin/bash
#
#**
Filename: rnfile.sh
Author: Alex Shaw III
Date created: May 24, 2005
Last modified: May 24, 2005
#
Purpose: Renames a file
#
Description:
Accepts two arguments from the users and renames the second
argument to the first argument. If the argument count is not two,
then an error statement is displayed.
#
Argument one must be a file to make the change.
#**

clear
if [$# == 2]; then #If argument count is 2

if [-f $1]; then # check file existence
mv $1 $2 # for argument one

if [-f $2]; then #If renamed file exists,
echo "Rename Program" # display result
echo "--------------"
echo "$1 is now $2"

exit 0
else #New file creation was

echo "Renaming $1 to $2 was unsuccessful!" # unsuccessful
exit 1

fi

exit 0
else #Argument 1 is not a

echo "$1 is not a file." # file
exit 1

fi

exit 0
else #The user did not enter

echo "You need two arguments to run suffix.sh" # two arguments
echo "Usage: suffix.sh argument1 argument2"
exit 1

fi
Code 4-8 rnfile.sh listing.

rnfile and rnfile.sh

The rnfile satisfies the task, while
rnfile.sh enhances it.

Code 4-8 provides a complete listing
of rnfile.sh, which includes the
purpose and description.

Shell Scripting with Arguments ▪ March 24, 2005 13

5
ANALYSIS

LABORATORY EXPERIMENT VI

 Revisions

Once the coding started, problems occurred that forced a
revision process to occur in some programs.

home.sh

If you use echo ~brw05 at the bash prompt, it displays
the home directory of user brw05. However, if you use
echo ~$1 in a script, it does not return the home directory
of $1. It returns ~ and the name of argument 1 ($1). It
was even difficult to assign the instruction to a variable.

In bash, ~"brw05" delivers the same result that ~$1 does
in a script. Therefore, it was realized that $1 behaved as
a string with ~.

Therefore, the cut command processed the /etc/passwd
file to cut the user name and home directory fields.

Below is the command line:
cut -f1,6 -d: /etc/passwd

After that, grep did a pattern search on $1 based on cut
results. Those results were piped to another cut command,
which separated the home directory from the user name.

Below is the script's instruction:
echo $homedir | cut -f2 -d:

Originally, the script's instruction involved one line that
cut the home directory based on $1.

Below is that instruction:
cut -f6 -d: /etc/passwd | grep $1

Field 6 pertains to the home directory; however, does the
home directory need to include the user's name? Although
the above instruction worked, it did not satisfy the question.

suffix.sh

The revised flowchart for suffix requires a test for file
readability; however, the mv command renamed a
non-readable file. Therefore, the readability test was not
implemented in the code.

Shell Scripting with Arguments ▪ March 24, 2005 14

Output 5-1 Manual page for the cut command.

New Commands

Although a variety of scripting instructions were
introduced in this experiment, the cut command
was vital in accomplishing a vital task.

cut

Output 5-1 displays the man page for cut.

Below is the command's usage in the home.sh
program:

cut -f1,6 -d: /etc/passwd | grep $1

-f
fields to cut.

-f1,6 cuts fields
1 and 6.

-d
field delimiter
-d: separate
fields by :

Cut fields from
/etc/passwd file

Search cut
results for the
$1 expression

Diagram 5-1 Syntax of the cut command as it is used in
the home.sh program.

Shell Scripting with Arguments ▪ March 24, 2005 15

6
CONCLUSION

LABORATORY EXPERIMENT VI

 Overall, no program is full proof, meaning that there can

be an error somewhere in the application. Most likely,
that error may occur during a daily operation of the
program; or, a coworker may mention, upon reading your
code, that you may want to check for this or improve that.

Although the programs in this experiment involved
relatively simple processes, it still involved a great deal
of thinking, tests, and error correction.

Most programming languages allow you to miss spaces
and other constructs. It may even fix them for you.
However, scripting sometimes require you to follow a
strict format. It could be confusing in certain instances;
but for the most part, they provide similar functionality.

One thing that seemed to go right for all programs is that
they all produced errors based on an omitted argument or
an out-of-range argument.

Shell Scripting with Arguments ▪ March 24, 2005 16

7
REFERENCES

LABORATORY EXPERIMENT VI

 References

No particular source was actually taken from any of the
references below; however, they provided some useful
examples to work from.

1. Sarwar, Syed Mansoor, Robert Koretsky, Syed
Aqeel Sarwar. Linux: The Textbook. Boston:
Addison Wesley Longman Inc., 2002.

2. Cooper, M. Advanced Bash-Scripting Guide:
http://www.tldp.org/LDP/abs/html/

