Laboratory Experiment V

SHELL SCRIPTING I

by Alex Shaw III

CIS 247, Section ZG81
Professor Braithwaite, R.

May 17, 2005

TABLE OF CONTENTS

Introduction
Laboratory Sheets

Data Sheets
Results

Source Code

Shell Scripting I

INTRODUCTION

Shell Scripting I

1

LABORATORY SHEETS

LABORATORY EXPERIMENT V

5. Make list executable by user, group, and others.

Shell Scripts

Introduction

We humans find constant repetition boring, And boredom leads to poor per-
formance. Computers, by contrast, don't know the difference. Tell your
computer to do the same job four thousand times, and you'll hear nary a
whimper.

The Linux shell script is a means by which you can get the compurter o
perform repetitive tasks. The shell script is also a valuable tool for dealing
with complicated command lines. If you find yourself using the find com-
mand with the -exec option often, for example, using a shell seript to
accomplish this task will remove the necessity of retyping and require that
you enter that complicated command line only once.

In This Module You Will Learn:

* the purpose behind shell scripts.

* how to construct simple shell scripts.

* how the use of variables can greatly increase the uscfulness of your
scripts.

As we did with the Try It Live! exercises in the Security chapter of this
guide, we will omit step-by-step instructions for some of the exercises.
If you need some help refer to the Try It Live! Answer Key at the back
of this guide. You will find whatever step-by-step instructions we have
omitted in the exercises.

1. Create a subdirectory under your directory practice. Call this new
directory scripts. You will use scripts to store the shell scripts you
create in these exercises.

2. Change to the directory scripts.

3. In this exercise, you will create the first shell script presented in the
Linux Made Easy CBT. This script will pipe the output of the Is -1
command into the utility more. Name the file list.

a. Type cat > list
b. Press <Enter>

c. Typels -1 | more
d. Press <Ctrl-D>

4. Check your work. Use cat to read the file list. Your screen should
look like Figure 9-1.

ls -1 | more

Figure 9-1 Text of the Script list

If you typed something incorrectly, you will have to recreate the file.
As we pointed out in the Linux Files chapter of this guide, if your
system permits, use cat > list to recreate the file. If your system
rerurns an error message similar to 1ist: file exists when
you try this, you will have to delete the file with rm before you
recreate it.

a. Type chmod a+x list

b. Press <Enter>

The default mode for a newly created file is usually
~IW-L-~F-

For a shell script to run, the permissions must include read and exe-
cute; execute permission alone is not sufficient.

6. List your directory scripts to be certain that the file mode for list

includes both read and execute permission. Your screen should look
similar to Figure 9-2.

-rwxr-xr-x 1 ronsm 12 Fri Nov 17 9:12 list

$ | AT
Figure 9-2 Directory Listing Showing Mode for iist
If user, group, and others do not have read permission for list, you

must add that permission before someone in that user category (u,
g o) tries to run the script.

7. Run your new shell script, list.

a, Type list

b. Press <Enter>

Did your script ran? If it did not run and the permissions are set
correctly, there are three other methods to try.

1. You may have received an error message, something like
“Command not found.” In simple terms, this happens
because the shell doesn’t know that it is supposed to look for
executable files in the working directory. The simplest solu-
tion, then, is to tell the shell, “Look here!” To do that, pre-
cede the name of the shell script with ./.

This means that the command line in step a of Exercise 7 will
now look like this:

Jlist

There is no space between the forward slash and the file-
name.

2. Run the script with the “dot command.” This means that the
command line in step a of Exercise 7 will now look like this:

. list
There is a space between the dot and list.

3. Run the script with the sh command. This means that the
command line in step a of Exercise 7 will now look like this:

sh list

Y continue on next page...

Shell Scripting I

iii

Laboratory Sheetsmmm

The script list is quite simple in both its construction and what it
does. Yet it requires nine fewer keystrokes than the command line that
it replaces — 1s -1 | more. If you use that command line often, the
nine keystrokes saved with each use of list become significant.

list works only in its own directory. We can make list more useful
by adding the ability to specify which directory to list. To do this, we

will use a variable.

. Create a shell script that incorporates Is -1 | more, and a prompt for
the specific directory to list. Call chis file list2.

a. Type cat > list2

b. Press <Enter>

c. Type echo -n “Which directory do you want to list?
d. Press <Enter>

e, Type read dir

f. Press <Enters

g. TypeIs -1 $dir | more

h. Press <Ctsl-D>

. The script list2 is a text file. Display the contents of the file on stan-
dard output.

Your screen should look like Figure 9-3.

echo -n “Which direétory'do:youlwant.ﬁﬁ-liét3 L2
read dir ER R s
1s -1 $dir | more

Figure 9-3 Text of the Shell Script fist2

The command echo tells the shell to display the text enclosed in
double quotes. The “-n” at the beginning of the line keeps the cur-
sor from moving to the next line; your response to the question
“Which directory do you want to list?” will be on the same line as
the question. The command read tells the system to take whatever
you entered in response to that question and place that response in
the variable dir. The third line is the familiar command, Is -1. The
directory that you specified now appears as the argument to Is -1.
When you run the script, if you respond to the question with
“lerc”, $dir becomes “/etc”, and Is -1 $dir becomes Is -1 fetc.

Shell script programming syntax generally requires that a variable,
dir in this case, be preceded by a “$” when the variable is
accessed—rthat is, when the value (the content) of the variable is
used. That is why dir becomes $dir in the last line of the script: The
value of the variable dir is used in this line. This means that, when

the script executes the line 1s -1 $dir | more, the system
replaces $dir with whatever you entered in response to the ques-
tion echoed in the first line of the seript, “Which directory do you
want to lis?”

If you made an error in creating the script list2, you should cor-
rect the error before running the script. Refer to the comment fol-
lowing Exercise 4.

10. Make the script list2 an executable file for all.

11. Run the shell script list2. Respond to the directory question with
fetc.

a. Type list2

b. Press <Enter>

c. Type fetc

d. Press <Enter>

On most systems, the directory /etc contains many entries. The
listing will fill the screen and stop until you press one of the two
keys necessary to continue the listing, (If you aren’t certain what

two keys we are talking about, see the Try It Live! Answer Key at
the very end of this guide.)

Reminder: If the script does not run after you have set the permis-
sions properly, use one of the alternative methods described in
the paragraphs following Exercise 7.

12. In this exercise, you will create the shell script ren that we pre-
sented in the Linux Made Fasy CBT.

. Type cat > ren
. Press <Enter>
. Type echo -n “Name of file you want to rename. ”
. Press <Enter>
. Type read oldname
Press <Enter>

L= T T - A I -

. Type echo -n “New name of file. *

h. Press <Enter>

i. Type read newname

j- Press <Enter>

k. Type mv $oldname $newname

I. Press <Enter>

m. Type echo “File $oldname changed to $newname. ”
n. Press <Ctrl-D>

13. Check your work by displaying the contents of the file ren on
standard output. Your screen should look like Figure 9-4.

"

echo -n “Name of file you want to rename.
read oldname

echo -n “New name of file., *

read newname

nv Soldname $newname

echo "File $oldname changed to $newname.

Figure 9-4 Text of Script ren

Y continue on next page...

Shell Scripting I

iv

Laboratory Sheetsmmm

14. Make the script ren executable by all. echo -n “What do you want to f£ind? *
15. The only files in this directory scripts are the scripts themselves. read thing
For this exercise, create a file to use with the script ren. Name the grep $thing *
file thisfile. Use the following text for the file: “This is the text for
a practice file.” (Or make up your own text.) Use cat and redirec- Figure 9-8 Text of Script srch
tion to create the file.
16. List your working directory, scripts, to be certain thar thisfile 22, Make the file srch executable for all.
exists. Your screen should look like either Figure 9-5 or Figure 9-6. 23. Run the script srch. In response to the question “What do you

want to find?”, answer “pens”, “file”, or “specialty”.

If you searched for “pens,” your screen should look like Figure 9-9.
If you searched for “file,” your screen should look like Figure 9-10.
If you searched for “specialty,” your screen should look like Figure

9-11. (Note that these figures show only partial screen displays.)

list list2 ren thisfile

Figure 9-5 List of Files in the Directory scripts

-IWXI-Xr-x 1 ronsm 15 Sep 19 8:12 list

-Irwxr-xr-x 1 ronsm 78 Sep 19 8:15 list2 What do you want to find? pens
-IWXr-xr-x 1 ronsm 154 Sep 19 8:21 ren sorted:correction pens
-rwxr--r-- 1 ronsm 22 Sep 19 8:25 thisfile :

Figure 9-6 List of Files in the Directory scripts L
' supplyl:writing -- pens.
supply3:correction pens

$ |

17. Run the script ren. Change the name of that new file from thisfile
to thatfile.

18. List the directory scripts to be certain that the filename has been

Figure 9-9 System Response with Script srch for “pens”
changed.

For the final exercise in this module, you will create a script that adds a
tiny bit of automation to grep. To put the script to use, you will use
the supply files you created as Robert’s intern. Those files are in the
directory catalog. Figure 9-7 displays the directory structure you have
created so far.

What do you want to find? file
sorted:folders -- file

supply9:folders -- file

Thome/userid supply9:folders -- hanging file
Ipractice supply9:folders -- specialty file
/backup $ |
[catalog
/dirl Figure 9-10 System Response with Script srch for “file”
/dir2
Iscripts
What do you want to find? specialty
Figure 9-7 Directory Structure You have Created sorted:folders —-- specialty file
19. Change to the directory catalog. Use the double dot notation (..) .
to make this change. 5
20. Create a script that uses grep. Call the script srch. supply6:staplers -- specialty

supply7:tape —-- specialty

. Type cat > srch 3 :
 Press <Enter> :upply9 :folders -- specialty file
Type echo -n “What do you want to find? ” |
. Press <Enter> Figure 9-11 System Response with Script srch for “specialty”

. Type read thing
Press <Enter>

. Type grep $thing *
. Press <Ctrl-D>

21. Check your work by displaying the contents of the script srch on
standard output. Your screen should look like Figure 9-8.

T o ™~ 0 Qo 0 T oo

Shell Scripting I v

2

DATA SHEETS

LABORATORY EXPERIMENT V

Results

Shell Scripting I 1

3

SOURCE CODE

LABORATORY EXPERIMENT V

1ls -1 more
Code Listing 3-1 /ist file

echo -n "Which directory do you want to list? "
read dir
ls -1 $dir | more

Code Listing 3-2 Jist2 file

echo -n "Name of file you want to rename. "
read oldname

echo -n "New name of file. "

read newname

mv S$oldname Snewnmae

echo "File $oldname changed to $newname."

Code Listing 3-3 ren file

echo -n "What do you want to find?"
read thing

grep S$thing

Code Listing 3-4 srch file

Shell Scripting I 2

